Revision 0.91

2022-09-01

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
895 nm DFB Laser	Spectroscopy (Cs D1 line)
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	

Absolute Maximum Ratings

Symbol	Unit	min	typ	max
T _S	°C	-40		85
T_{C}	°C	-20		75
T_{LD}	°C	0		50
I _F	mA			140
V_R	V			2
P_{opt}	mW			60
I _{TEC}	А			1.0
V_{TEC}	V			1.0
	T _S T _C T _{LD} I _F V _R P _{opt} I _{TEC}	$\begin{array}{cccc} T_{S} & ^{\circ}C \\ T_{C} & ^{\circ}C \\ T_{LD} & ^{\circ}C \\ I_{F} & mA \\ V_{R} & V \\ P_{opt} & mW \\ I_{TEC} & A \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	0		55
Operational Temperature at Laser Chip	T_LD	°C	15		45
Forward Current	I _F	mA			120
Output Power	P _{opt}	mW	20		50

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° C at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	$\lambda_{\scriptscriptstyle C}$	nm	893		896
Target Wavelength	λ_{T}	nm		894.59	
Linewidth (FWHM)	Δλ	MHz		2	
Sidemode Supression Ratio	SMSR	dB	30	45	
Temperature Coefficient of Wavelength	$d\lambda/dT$	nm / K		0.06	
Current Coefficient of Wavelength	$d\lambda/dI$	nm / mA		0.003	

see ima	ages on page 4	
reache	d within $T_{LD} = 15$ ° 45 ° C at 50 mW	
P _{opt} =	50 mW	
P _{opt} =	50 mW	

Revision 0.91

2022-09-01

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° (C at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm	25		
Laser Current @ $P_{opt} = 50 \text{ mW}$	I_{LD}	mA			120
Slope Efficiency	η	W/A	0.6	0.8	1.1
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	
Degree of Polarization	DOP	70		90	

Measurement Conditions / Comments
Measurement Conditions / Comments
> 10 GHz, at target wavelength
parallel to Pin 1 - Pin 6 plane (see p. 3)
perpendicular to Pin 1 - Pin 6 plane (see p. 3)
$P_{opt} = 50$ mW; E field perpendicular to Pin 1 - 6 plane

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA/mW		t.b.d.	

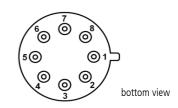
Meas	urement Conditions / Comments
$U_R =$	5 V

Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.4	
Power Dissipation (total loss at case)	P _{loss}	W		0.4	
Temperature Difference	ΔΤ	K			40

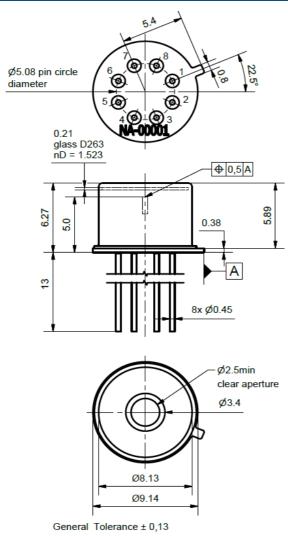
Measurement Conditions / Comments
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 50 \text{ mW}, \Delta T = Tcase - TLD $

Thermistor (Standard NTC Type)					
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3930	
Steinhart & Hart Coefficient A	А			1.029 x 10	-3
Steinhart & Hart Coefficient B	В		2.510 x 10 ⁻⁴		
Steinhart & Hart Coefficient C	C			1.051 x 10	-7
Steinhart & Hart Coefficient C				1.031 x 10	

Measurement Conditions / Comments T _{LD} = 25° C					
$R_1 / R_2 = e^{ \beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C				
$1/T = A + B(\ln R) + C(\ln R)^3$					
T: temperature in Kelvin					
R: resistance at T in Ohm					



2022-09-01

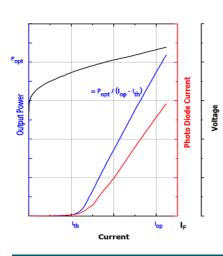

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pi	n Assignment		
1	Laser Diode Anode	5	Thermistor
2	Laser Diode Cathode	6	Thermistor
3	Thermoelectric Cooler (-)	7	Photo Diode Anode
4	Thermoelectric Cooler (+)	8	Photo Diode Cathode
All	8 pins are isolated from case.		

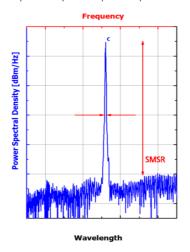
Package Drawings

AIZ-19-0129-1426B

Revision 0.91

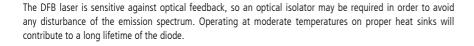

2022-09-01

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



Typical Measurement Results

Output Power vs. Current


Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

