

Revision 1.22

GAIN CHIPS AR coated Fabry-Perot Laser

General Product Information

Product	Application
tunable 670 nm Fabry-Perot Laser	Li Spectroscopy at 671 nm
for use in an External Cavity Diode Laser (ECDL)	also covering 668 nm
sealed SOT Housing	
Monitor Diode	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T_C	°C	0		30
Forward Current	I _F	mA			160
Reverse Voltage	V_R	V			0
Output Power (extracavity)	P_{opt}	mW			60

Measurement Conditions / Comments Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	15		20
Forward Current	I _F	mA			140

Measurement Conditions / Comments

Characteristics at T_C= 20°C, BOL under recommended working condition

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm		670	
Tuning Range	$\Delta \lambda_{tun}$	nm	665		675
Output Power	P_{opt}	mW		50	
Polarization				TE	
Spatial Mode (transversal)				TEM00	

Measurement Conditions / Comments The actual achieved wavelength and power

are strongly influenced by the external cavity. eyP gives no guarantee on these parameters.

E field parallel to Pin 2 - Pin 3 - plane Fundamental Mode

Revision 1.22

GAIN CHIPS AR coated Fabry-Perot Laser

Amplified Spontaneous Emission (ASE) without external cavity

Parameter	Symbol	Unit	min	typ	max
Divergence parallel (FWHM)	$\Theta_{ }$			10	
Divergence perpendicular (FWHM)	Θ_{\perp}			29	
Monitor Detector Responsivity	I _{mon} / P _{ASE} μ	۹/mW	1		40

Measurement Conditions / Comments parallel to Pin 2 - Pin 3 plane (see p. 3) perpendicular to Pin 2 - Pin 3 plane (see p. 3) $U_{R MD} = 5 V$

Chip Parameter

Parameter	Symbol	Unit	min	typ	max
Cavity Length	L	μm		1000	
Reflectivity at Front Facet	R_{ff}			3·10 ⁻⁴	1·10 ⁻³

Measurement Conditions / Comments

Revision 1.22

GAIN CHIPS AR coated Fabry-Perot Laser

Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	3.50	3.65	3.70
Excentricity of Emission Center	R	mm			0.12
Pin Length	L_{PIN}	mm		14	

Measurement Conditions / Comments reference plane: top side of TO header reference: center of outer diameter of header

Package Pinout

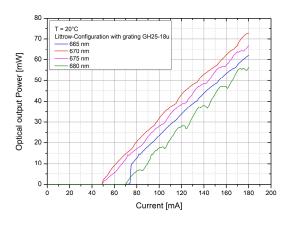
- 1 Laser Diode Cathode, Monitor Diode Cathode, Case
- 2 Photo Diode Anode
- 3 Laser Diode Anode

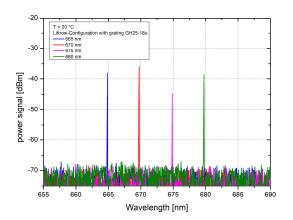
M-type

Package Drawings

eagleyard Photonics GmbH Rudower Chaussee 29 www.toptica-eagleyard.com info@toptica-eagleyard.com fon +49.30.6392 4520

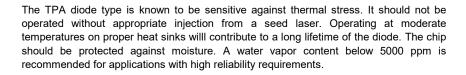
AIZ-16-0421-1517




Revision 1.22

GAIN CHIPS AR coated Fabry-Perot Laser

Typical Measurement Results



Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this

